二、硫酸鹽生物還原法處理含鋅廢水
硫酸鹽生物還原法處理含鋅廢水其原理是利用硫酸鹽還原菌SRB在厭氧條件下產生硫化氫,硫化氫和廢水中的重金屬反應,生成金屬硫化物沉澱以去除重金屬離子。
1.廢水處理工藝流程見圖9-25。
2.工藝說明 利用微生物方法處理重金屬廢水時,由於廢水中常缺乏微生物生長所需的營養物質,包括有機物、氮、磷等,因此,在廢水中需加入所缺的營養物質。
生物反應器是一個厭氧反應係統,微生物在厭氧條件下分解有機物,還原硫酸鹽生成硫化氫,硫化氫與廢水中的鋅離子反應生成不溶性的硫化鋅。生物反應器的類型可以是上流式厭氧汙泥床、厭氧接觸反應器等。
反應生成的硫化鋅沉澱同厭氧汙泥混在一起,當其濃度達到一定程度以後,為了保證生物反應器的正常運行,就必然排放一部分汙泥。由於汙泥中鋅含量較高,可以回收。
從沉澱池中的出水,雖然鋅離子的去除率很高,但是出水中還含有比較高的COD和硫化氫,因此必須要進行好氧處理去除COD和硫化氫,使最終出水的指標都達到國家排放標準。
3.工藝參數對處理效果的影響 從有關的研究中,分析不同的工藝參數對鋅離子去除效果的影響。
(1)進水COD濃度對鋅離子去除能力的影響 進水COD濃度對鋅離子和COD去除能力的影響結果見表9-16。
從表9-16可見,出水COD隨進水COD的降低而降低。反應器中的硫化氫濃度隨進水COD濃度下降而下降。但硫化氫濃度為80mg/L左右時,進水COD增加不會導致硫化氫的增加。因此,考慮反應器進行的穩定性和出水水質,廢水中營養物的加入量應當控製在300mg/L左右。
(2)水力滯留時間對反應器穩定性的影響 在進水COD為320mg/L,鋅離子100mg/L的條件下逐漸提高進水速率。水力滯留時間由18h逐漸減少至3h,結果如表9-17。
由表9-17可以看出,當水力滯留時間由18h降至9h時,對鋅離子的去除率基本無影響,繼續降低水力滯留時間鋅離子的去除率開始逐漸降低,當水力滯留時間降到4h以後,鋅離子的去除率急驟下降。分析裝置對鋅離子的總去除能力可以發現:隨著水力滯留時間的減少,裝置單位容積對鋅離子的去除效率逐漸提高,當水力滯留時間降到5h後,反應器的離子去除能力最高,為429mg/L•d。如繼續降低水力滯留時間去除能力反而降低。當水力滯留時間為3h時,鋅離子去除效率僅為246.8mg/L•d。這說明SRB的活性受到了抑製。
(3)廢水中鋅離子濃度對反應器穩定性的影響 進水中鋅離子由初始的100mg/L逐漸增加到600mg/L,結果見表9-18。從表9-18可以看出,該方法對500mg/L以下的含鋅廢水都能有效地處理。隨著濃度的提高,裝置的單位體積處理效率也跟著提高,最高達1329mg/L•d。但如進一步提高進水鋅濃度至600mg/L,則鋅離子去除能力反而大大降低,單位體積的去除效率僅為864mg/L•d。說明SRB已經受到鋅的毒害作用。盡 管如此,該結果也表明,本方法能夠耐受較高濃度的鋅離子的衝擊。
(4)進水硫酸鹽濃度對鋅離子去除率的影響 試驗中為了避免幹擾,進水COD濃度提高到640mg/L,結果見表9-19。由表9-19表明,該法在所試範圍內對鋅離子的去除率均為97%以上。分析硫化氫濃度表明,SRB的活性受硫酸鹽濃度影響。在硫酸根濃度低於500mg/L時,SRB的活性隨著硫酸根濃度的降低而降低。至100mg/L時,出水中已經測不到硫化氫,在該濃度下看來不能長期運行。由於一般的工業廢水中硫酸鹽的濃度都較高,因而硫酸鹽的濃度不會影響本方法的應用。
4.供設計參考的工藝參數 硫酸鹽還原菌處理含鋅廢水的汙泥床工藝可在進水COD和鋅濃度分別為320mg/L與100mg/L時有效運行,有機物和鋅離子的去除率分別達到73.8%和99.63%。在水力滯留時間降至6h時,鋅離子的去除率仍可達94.5%。進水鋅離子濃度低於500mg/L時裝置可以穩定運行,而當濃度達到600mg/L時,硫酸鹽還原菌受到鋅離子的明顯毒害。當進水COD1500mg/L,鋅離子500mg/L,水力滯留時間為9h時,裝置的鋅離子容積去除率可達1329mg/L•d。
上一篇:重金屬廢水的微生物處理
下一篇:工業微生物的篩選和紫外誘變育種